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Reflection and transmission of nonlinear blood waves due to arterial branching

Wen-shan Duan,1,2 Ben-ren Wang,1 and Rong-jue Wei1
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2Northwest Normal University, Lanzhou 730070, People’s Republic of China
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An approach is proposed to understand the effect of arterial branching in large arteries. Reflected and
transmitted nonlinear waves at the arterial branching are constructed from incident waves analytically. Fission
and reflection of a soliton due to this discontinuity are explicitly shown in the lowest order. The conclusion can
be drawn that the reflection due to arterial branching can be determined by the parameter values at the arterial
branching, but two solitons will be transmitted in each branch artery from one incident soliton whose wave
form and velocity remain approximately unchanged.@S1063-651X~97!11101-1#

PACS number~s!: 87.45.2k, 47.35.1i
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INTRODUCTION

The most striking feature of arterial blood flow is its pu
satile character. The intermittent ejection of blood into t
aorta from the left ventricle of the heart produces flow a
pressure pulses in the arterial tree. Experimental studie
these pulses have revealed that they propagate with a c
acteristic pattern. They undergo well-defined changes in t
wave form as they propagate away from the heart@1,2#. The
transmission of the pressure pulse is accompanied by a
crease in amplitude and a decrease in pulse width, wh
have been noted as ‘‘peaking’’ and ‘‘steepening,’’ respe
tively. The increase in amplitude is combined with the d
velopment of a dicrotic wave.

Many works on blood motion deal with linearized mode
@1,2#. These theories have been constructed with certain
sumptions. First, the nonlinear convective terms in the eq
tion of motion of the fluid are totally neglected. One reas
for expecting these to be small is that the mean flow velo
is usually less than 10% of the wave velocity. However,
condition that justifies neglecting the nonlinear terms can
be assumed satisfactorily in the case of arterial pulse wa
with large amplitude. From the measurements of flow pul
in the artery of a dog, it is known that the pulse wave velo
ity is about the order of 53102 cm/sec, the maximum veloc
ity or the amplitude of flow pulse is about 102 cm/sec, and
the timet which is required for the flow velocity to increas
from zero to the maximum is about 531022 sec. Then the
ratio of the maximum contribution of the nonlinear term
that of the linear term is estimated to be about 0.2. T
suggests that it may be a crucial fault in describing the p
satile motion of the arterial blood to neglect the nonline
convective terms. Second, it is assumed in linearized theo
that the distortion of the vessel wall is a small percentage
the radius of the vessel. In systemic arteries, the chang
radius during any one cardiac cycle is usually less than
but the accompanying change in cross-sectional area ma
be negligible. Third, linear elastic properties of vessel wa
are usually assumed in these theories. But the modulu
elasticity of arterial vessels varies quite strongly with pr
sure. The omission of this effect may cause another ser
problem with the linearized theories.

In 1960 McDonald measured simultaneously change
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amplitude and wave form of blood pressure at five sites fr
the ascending aorta to the saphenous artery in a dog~Fig. 1!.
Because it had been assumed that blood is an ideal fluid
an artery is an elastic tube, the dynamical equation of p
sure wave for this system is the KdV equation@3–5#. As is
well known, for a KdV equation, a given initial wave profil
decomposes in the course of propagation into separate
tons and usually a small amount of so-called radiation~an
oscillatory tail not containing any solitons! that will be at-
tenuated during the propagation. Although Fig. 1 can be w
interpreted by linear theory@1,2#, it suggests a possible in
terpretation in terms of solitons, so we assume that e
blood pulse will evolve into one larger soliton and anoth
smaller one after the blood pulse propagates into the abdo
nal aorta. The soliton amplitude will change slightly due
the inhomogeneity of the blood vessel wall~variation of ra-
dius and Young’s modulus of the artery with the propagat
distance!, which has been studied previously@6,7#. KdV-type
solitons in an inhomogeneous medium have been stu
extensively@8,9#, for example, nonlinear waves in nonline
lattices whose masses of particle are not uniform@10#, shal-

FIG. 1. A diagrammatic comparison of the behavior of the flo
velocity and pressure pulse.
1773 © 1997 The American Physical Society
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low water waves with uneven bottom@14#, etc. In general,
we only consider the transmission and the reflection of
larger soliton, because the smaller one can be studie
much the same way.

Recently, Yomosa studied the motion of weakly nonline
pressure waves in a thin nonlinear elastic tube filled with
incompressible fluid. He showed that the dynamics can
governed by the KdV equation@5#. On the other hand, in
order to understand the principal feature of blood flow a
the role of the different types of structures that influen
blood motion, Paquerot and Remoissent studied the prop
tion of pressure and wall displacement pulses in a large e
tic artery with the presence of both dispersion and variat
of the radius and Young’s modulus of the artery@6#. How-
ever, without considering the arterial branching effect, th
did not know how the arterial branching affects the propa
tion of nonlinear blood waves. In order to elucidate the tra
mission and the reflection of blood flow at the arter
branching, a general method is proposed to understand
linear wave reflection and transmission from incident wa
in a one-dimensional fluid-filled elastic tube at the branch
~see Fig. 2!. The wave equation of reflection and transm
sion are given analytically. The contribution of both bloo
viscosity and nonlinearity has been well studied@1#, but we
neglected blood viscosity in this paper because the visc
effects are mainly confined to the boundary layers, wh
thickness is much less than the vessel radius. It can be
mated that the thickness of the boundary layers is about 122

cm by the equation ofAh/r0v if we take the paramete
values ash50.012P, r051.05 g/cm3 ~see Ref.@11#!, a50.5
cm ~large artery!, andv;10/s~there are only two pulses pe
second!. Compared with vessel radius, the boundary laye
much less. We will not consider the boundary layer sinc
is so small, but we will consider the blood flow at the cen
of the artery, which includes almost the total cross section
the artery and of course nearly almost all of the blood fl
for a large artery. The maximum and minimum values
blood velocity are approximately 100 cm/sec and 0, resp
tively ~see Fig. 1!, and there are only about two pulses p
second, therefore the contribution of viscosity is estima
by h(1/r )(]u/]r );102231/0.53100/0.5;4 ~neglecting the
boundary layer contribution!, and the contribution of nonlin-
earity is estimated byr0u(]u/]x);1.0531003100/50
;200. The nonlinear effect is more important than the v

FIG. 2. Reflection and transmission of the nonlinear blood w
at the arterial branching.
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cous effect in a large artery~a;0.5 cm! if we only consider
the majority of blood flow at the center of the artery. Th
interesting results are that the incident wave can be trans
ted into each bifurcation without changing, or nearly witho
changing, the amplitude, however sometimes there is s
stantial reflection, but often it is so small that it can be n
glected. The parameter values at the arterial bifurcations
termine whether there is substantial reflection or not.

EQUATION OF MOTION

By virtue of the anatomical geometry, the pulse can
represented by a one-dimensional wave. Following previ
authors@5,6,12#, we assume that blood can be regarded as
incompressible and inviscous fluid. Further, our model
sumes that arteries are uniform inhomogenous cylindr
tubes having nonlinear elasticity. The laws of hydrodyna
ics governing the transport of an inviscous and incompre
ible fluid are the conservation of mass and the momen
equation, given, respectively, by

]A

]t
1

]~Av !

]x
50, ~1!

]v
]t

1v
]v
]x

52
1

r0

]P

]x
. ~2!

A third equation describing the radial motion of the wa
under the forces exerted by the fluid is necessary in orde
have a complete specification of the system@5#,

rwh
]2R

]t2
5P2Pe2

h

R
s, ~3!

whererw is the density of the blood artery~rw51.05 g/cm3!.
Pe the external pressure,s the extending stress in the tan
gential direction, andh the thickness of the tube of radiu
R(x,t). We can suppress the unknown pressurePe if we
consider an artery already inflated at the diastolic pressureP0
with radiusa, thicknessh0, and with the equilibrium relation
Pe5P02(h0/a)s

0. Only considering weak waves, i.e
A2A05pR22pa2'2pa(R2a) and defining the small ra
dial elongation of the arterial wallg5(R2a)/a and the dif-
ferential pressurep5P2P0 , it follows from Eq. ~3! that

rwh

2pR0

]2~A2A0!

]t2
5p2

h0a

R2 s8, ~4!

wheres85gE~11ag!, E is Young’s modulus, anda is the
coefficient of nonlinear elasticity. It is assumed that the w
is incompressible, i.e.,Rh5R0h0 .

Introducing the dimensionless quantities through the d
nitions A5pa2A8, p5p0p8, t5Tt8, x5Lx8, v5(L/T)v8,
A05pa2, L25rwah/2r0 , p05Eh/2a, T25rwa

2/E, we
then have the dimensionless equations from Eqs.~1!, ~2!, and
~4!,

]A8

]t8
1

]~A8v8!

]x8
50, ~5!
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]v8

]t8
1v8

]v8

]x8
52

]p8

]x8
, ~6!

p85
2

11A8

]2A8

]t82
1~A821!

2~22a1aA8!

~11A8!2
. ~7!

Now we consider the model in which the cylinder tu
has one branch at the regionx,0 and two branches at th
regionx.0. The wall of the cylinder tube has a jump ofa,
rw , h0, andE atx50 ~Fig. 2!. The variables of one branch a
x.0 are represented byp2, v2, A2, etc., and the others a
x.0 are represented byp3, v3, A3, etc. Those atx,0 are
represented byp, v, A, etc.

For x.0 we only consider the transmitted waves and
troduce new independent variables

j5e~x82t8!, ~8!

h5
e3

2
x8. ~9!

Introducing the perturbation expansions

p285e2p21
t 1e4p22

t 1••• , ~10!

A28511e2A21
t 1e4A22

t 1••• , ~11!

v285e2v21
t 1e4v22

t 1••• , ~12!

p385e2p31
t 1e4p32

t 1••• , ~13!

A38511e2A31
t 1e4A32

t 1••• , ~14!

v385e2v31
t 1e4v32

t 1••• , ~15!

substitution of Eqs.~8!–~12! into Eqs.~5!–~7! yields atO~e2!

p21
t 5A21

t 5v21
t . ~16!

At O~e4! we can get

]v21
t

]h
1~11a!v21

t
]v21

t

]j
1

]3v21
t

]j3
50. ~17!

Similarly it can be obtained

]v31
t

]h
1~11a!v31

t
]v31

t

]j
1

]3v31
t

]j3
50, ~18!

p31
t 5A31

t 5v31
t . ~19!

For x,0 we need to consider both incident and the
flected waves. For this purpose we introduce the follow
transformations of independent and dependent variables

j5e~x82t8!, ~20!

t5e~x81t8!, ~21!

h5
e3

2
x8, ~22!
-

-
g

and the perturbation equations

p85p8~j,t,h!5e2p11e4p21••• , ~23!

v85v8~j,t,h!5e2v11e4v21••• , ~24!

A85A8~j,t,h!511e2A11e4A21••• . ~25!

Substitution of Eqs.~20!–~25! into Eqs. ~5!–~7! yields at
O~e2!

2
]A1

]j
1

]A1

]t
1

]v1
]j

1
]v1
]t

50, ~26!

2
]v1
]j

1
]v1
]t

1
]p1
]j

1
]p1
]t

50, ~27!

p15A1 . ~28!

Considering the equilibrium condition ofp50 whenv50,
we can obtain the following equations:

A15A1
I ~j,h!1A1

R~t,h!, ~29!

p15p1
I ~j,h!1p1

R~t,h!, ~30!

v15v1
I ~j,h!1v1

R~t,h!, ~31!

and

A1
I 5p1

I 5v1
I , ~32!

A1
R5p1

R52v1
R . ~33!

Similarly atO~e4! we can get

2
]A2

]j
1

]A2

]t
1

]~A1v1!
]j

1
]v2
]j

1
]v2
]t

1
]~A1v1!

]t
1
1

2

]v1
]h

50, ~34!

2
]v2
]j

1
]v2
]t

1v1
]v1
]j

1v1
]v1
]t

1
]p2
]j

1
]p2
]t

1
1

2

]p1
]h

50,

~35!

p25A21
a22

2
1

]2A1

]j2
1

]2A1

]t2
22

]2A1

]j]t
, ~36!

considering thatA1v15A 1
I v 1

I 1A 1
Rv 1

R, which can be given
from Eqs.~29!–~33! and rewriting Eqs.~34!–~36!,

2
]A2

]t
12

]v2
]t

1
]~A1

I v1
I !

]j
1

]~A1
Rv1

R!

]t
1
1

2

]v1
I

]h
1
1

2

]v1
R

]h

1
]3A1

I

]j3
1

]3A1
R

]t3
1v1

]v1
I

]j
1v1

]v1
I

]t
1~a22!A1

]A1
I

]j

1~a22!A1

]A1
R

]t
1
1

2

]p1
I

]h
1
1

2

]p1
R

]h
50, ~37!
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22
]A2

]j
12

]v2
]j

1
]~A1

I v1
I !

]j
1

]~A1
Rv1

R!

]t
1
1

2

]v1
I

]h
1
1

2

]v1
R

]h

2
]3A1

I

]j3
2

]3A1
R

]t3
2v1

]v1
I

]j
2v1

]v1
R

]t
2~a22!A1

]A1
I

]j

2~a22!A1

]A1
R

]t
2
1

2

]p1
I

]h
2
1

2

]p1
R

]h
50. ~38!

From Eqs.~32! and ~37! we can obtain

]v1
I

]h
1~a11!v1

I
]v1

I

]j
1

]3v1
I

]j3
50 ~39!

if we set

2
]A2

]t
12

]v2
]t

1
]~A1

Rv1
R!

]t
1

]3A1
R

]t3
1v1

R
]v1

I

]j
1v1

I
]v1

R

]t

1v1
R

]v1
R

]t
1~a22!A1

R
]A1

I

]j
1~a22!A1

]A1
R

]t
50.

~40!

From Eqs.~33! and ~38! we can obtain

]v1
R

]h
2~a11!v1

R
]v1

R

]t
1

]3v1
R

]t3
50 ~41!

if we set

22
]A2

]j
12

]v2
]j

1
]~A1

I v1
I !

]j
2

]3A1
I

]j3
2v1

I
]v1

I

]j
2v1

R
]v1

I

]j

2v1
I

]v1
R

]t
2~a22!A1

I
]A1

R

]t
2~a22!A1

]A1
I

]j
50.

~42!

Letting

v21
t 5

26

11a
v2
t , ~43!

v31
t 5

26

11a
v3
t , ~44!

v1
I 5

26

11a
v I , ~45!

v1
R5

6

11a
vR , ~46!

we can rewrite Eqs.~17!, ~18!, ~39!, and ~41! as the KdV
equations,

]v2
t

]h
26v2

t
]v2

t

]j
1

]3v2
t

]j3
50. ~47!

Similar equations can be given forv 3
t , v I , andvR.
CONSTRUCTION OF TRANSMITTED AND REFLECTED
WAVES FROM INCIDENT WAVES

We examine the conditions for the continuity of pressu
and mass atx50. NeglectingO~e4! quantities we have

k1@p1
I ~2et8,0!1p1

R~et8,0!#5k2p21
t ~2et8,0!, ~48!

k2p21
t ~2et8,0!5k3p31

t ~2et8,0!, ~49!

a1
2S k1
2r0

D 1/2@v1I ~2et8,0!1v1
R~et8,0!#

5a2
2S k2
2r0

D 1/2v21t ~2et8,0!1a3
2S k3
2r0

D 1/2v31t ~2et8,0!,

~50!

wherek15E1h10/a1 , k25E2h20/a2 , andk35E3h30/a3 .
Equations~48!–~50! can be rewritten in the following

form:

v2
t ~2et8,0!5

2

k2 /k11Ak2 /k1~a2 /a1!21k2 /Ak3k1~a3 /a1!2

3v I~2et8,0!, ~51!

v3
t ~2et8,0!5

2

k3 /k11Ak3 /k1~a3 /a1!21k3 /Ak2k1~a2 /a1!2

3v I~2et8,0!, ~52!

vR~2et8,0!5
12Ak1 /k2~a2 /a1!22Ak1 /k3~a3 /a1!2

11Ak1 /k2~a2 /a1!21Ak1 /k3~a3 /a1!2

3v I~2et8,0!. ~53!

Let us consider one soliton solution of

]v I

]h
26v I

]v I

]j
1

]3v I

]j3
50, ~54!

v I522
1

d2
sech2S j

d
2
4h

d2 D , ~55!

whered denotes the width of the soliton.
From an initial condition

V~X,0!5AL22 sech2
X

L
~56!

for the KdV equation

VT26VVX1VXXX50, ~57!

we can determine the numberN of generated solitons by th
inverse scattering method@13#. The numberN is the maxi-
mum integer which satisfies

AA1 1
41 1

22N.0 ~58!

and the amplitude of the generated solitons is given by
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2~AA1 1
41 1

22 j !2L22 ~59!

( j51,2,3,...,N).
Using these formulas we determine the amplitudes of

flected and transmitted solitons. From Eqs.~51!, ~52!, ~53!,
and ~55! we can determine the initial conditions ofv 2

t , v 3
t ,

andvR,

v2
t ~2et8,0!5

2

k2 /k11Ak2 /k1~a2 /a1!21k2 /Ak3k1~a3 /a1!2

3~22d22!sech2S 2et8

d D , ~60!

v3
t ~2et8,0!5

2

k3 /k11Ak3 /k1~a3 /a1!21k3 /Ak2k1~a2 /a1!2

3~22d22!sech2S 2et8

d D , ~61!

vR~2et8,0!5
12Ak1 /k2~a2 /a1!22Ak1 /k3~a3 /a1!2

11Ak1 /k2~a2 /a1!21Ak1 /k3~a3 /a1!2

3~22d22!sech2S 2et8

d D . ~62!

It can be obtained that for the reflected wave the numberN is
1 or 0. For the transmitted waves one or more solitons
always generated.

DISCUSSION AND CONCLUSION

We only study transmission and reflection of blood pu
waves for a dog. The parameter values at arterial bifurcat
for a dog are approximately given to estimate reflection a
transmission from incident waves. The experimental res
tell us that the radius of an artery changes slowly along
propagation distance. The radius is assumed to have a w
exponential evolution, that is,a5a0e

5mx, wherem anda0
are positive constants~see Ref.@11#!. According to its ex-
perimental data, the approximate parameter values at art
bifurcation of the abdominal aorta into the femoral arter
are given, respectively, as follows:a150.7 cm, h150.05
cm, E15103106 dyn/cm2 ~for the abdominal aorta!, and
a25a350.6 cm, h25h350.04 cm, E25E35103106

dyn/cm2 ~for the femoral aorta!. The initial values of re-
flected and transmitted waves at the bifurcation in branch
and 3 are given from Eqs.~51!, ~52!, and~53!, respectively,
by

v2
t ~2et8,0!'0.8v I~2et8,0!, ~63!

v3
t ~2et8,0!'0.8v I~2et8,0!, ~64!
-

re

e
ns
d
ts
e
ak

ial
s

2

vR~2et8,0!'20.2v I~2et8,0!, ~65!

and then the amplitude of solitons propagating in branche
and 3 can be given by Eq.~59!,

v2s
t 5v3s

t '0.86v I . ~66!

It can be concluded from Eq.~58! that there is only one
transmitted soliton in each branch and the soliton amplitu
is larger than that of the initial value for the transmitte
waves. The reflection is substantial~20% of the incident
waves!. It has been well known that there are many sm
arterial bifurcations in the thoracic or abdominal aorta, a
we now estimate the reflection and the transmission at th
bifurcations. There is, for example, a renal artery in the
dominal aorta@11#, for which the experimental data ar
given by a15a2'0.8 cm,E15E2'103106 dyn/cm2 ~for
the abdominal aorta! anda3'0.2 cm,E3'103106 dyn/cm2

~for the renal aorta!. h0/a is approximately a constant. Th
transmission and the reflection are given by Eqs.~51!, ~52!,
and ~53! as follows:

v2
t ~2et8,0!'0.97v I~2et8,0!, ~67!

v3
t ~2et8,0!'0.97v I~2et8,0!, ~68!

vR~2et8,0!'20.03v I~2et8,0!, ~69!

and then the amplitude of solitons propagating in branche
and 3 can be given by Eq.~59!,

v2s
t 5v3s

t '0.98v I , ~70!

but the reflection is negligibly small. We can conclude th
sometimes the reflection can be neglected, but sometim
cannot. The parameter values at the bifurcation determ
whether there is substantial reflection or not.

It has been well known that the KdV equation is one
the typical nonlinear equations that have soliton solutio
Any separate pulses with constant or nearly constant w
form and velocity described by the KdV equation are so
tons. We propose that transmitted waves are solitons,
this can explain why blood pulse waves can propagate
any artery, because solitons have this character. When b
pulses are transmitted at the bifurcations, their amplitu
are approximately unchanged~experimental results!. This is
consistent with soliton theory. These observations are a
consistent with linear theory~see Ref.@1#!. Actually, the am-
plitudes of blood pulses change slightly as they propag
away along the artery. This is due to the variation of the r
radius and Young’s modulus of an artery or blood viscos
in a very small artery. These solitons are sometimes ca
quasisolitons. There have been many studies on so-ca
quasisolitons in one-dimensional inhomogeneous syst
such as nonlinear lattices whose masses are not uniform@10#,
shallow water waves with an uneven bottom@14#, etc. Some-
times no solitons can be measured when the arterial par
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eter values are not suitable. In this case, the artery is ab
mal, and probably some information on disease can be
tained from the blood pulse waveform. Soliton theory c
tell us whether the artery is in a normal condition by me
suring the blood pulse wave form. If some vascular dise
exists, the soliton amplitude and velocity will change, b
cause the radius, thickness, and Young’s modulus of an
tery are changed by vascular disease.
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