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Reflection and transmission of nonlinear blood waves due to arterial branching
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An approach is proposed to understand the effect of arterial branching in large arteries. Reflected and
transmitted nonlinear waves at the arterial branching are constructed from incident waves analytically. Fission
and reflection of a soliton due to this discontinuity are explicitly shown in the lowest order. The conclusion can
be drawn that the reflection due to arterial branching can be determined by the parameter values at the arterial
branching, but two solitons will be transmitted in each branch artery from one incident soliton whose wave
form and velocity remain approximately unchanggstl063-651X97)11101-1

PACS numbd(s): 87.45—k, 47.35:+i

INTRODUCTION amplitude and wave form of blood pressure at five sites from
the ascending aorta to the saphenous artery in dfigg 1).

The most striking feature of arterial blood flow is its pul- Because it had been assumed that blood is an ideal fluid and
satile character. The intermittent ejection of blood into thean artery is an elastic tube, the dynamical equation of pres-
aorta from the left ventricle of the heart produces flow andsure wave for this system is the KdV equati@-5]. As is
pressure pulses in the arterial tree. Experimental studies dfell known, for a KdV equation, a given initial wave profile
these pulses have revealed that they propagate with a chatecomposes in the course of propagation into separate soli-
acteristic pattern. They undergo well-defined changes in theffons and usually a small amount of so-called radiatian
wave form as they propagate away from the héha] The OSC|”at0ry ta.|| not Conta|n|ng any SOI|tOh$hat W|” be at-
transmission of the pressure pulse is accompanied by an ifenuated during the propagation. Although Fig. 1 can be well
crease in amplitude and a decrease in pulse width, whiciterpreted by linear theorfl,2], it suggests a possible in-
have been noted as “peaking” and “steepening,” respec.terpretation in terms of solitons, so we assume that each
tively. The increase in amplitude is combined with the de-blood pulse will evolve into one larger soliton and another
velopment of a dicrotic wave. smaller one after the blood pulse propagates into the abdomi-

Many works on blood motion deal with linearized models nNal aorta. The soliton amplitude will change slightly due to
[1,2]. These theories have been constructed with certain asbe inhomogeneity of the blood vessel wedbriation of ra-
sumptions. First, the nonlinear convective terms in the equadius and Young’s modulus of the artery with the propagation
tion of motion of the fluid are totally neglected. One reasondistance, which has been studied previou$;7]. Kdv-type
for expecting these to be small is that the mean flow velocitysolitons in an inhomogeneous medium have been studied
is usually less than 10% of the wave velocity. However, theextensively[8,9], for example, nonlinear waves in nonlinear
condition that justifies neglecting the nonlinear terms cannol@ttices whose masses of particle are not unif¢t®|, shal-
be assumed satisfactorily in the case of arterial pulse waves
with large amplitude. From the measurements of flow pulses 140r
in the artery of a dog, it is known that the pulse wave veloc-
ity is about the order of 8107 cm/sec, the maximum veloc-
ity or the amplitude of flow pulse is about 46m/sec, and 60
the time 7 which is required for the flow velocity to increase I
from zero to the maximum is about®&0 2 sec. Then the 20} /"\
ratio of the maximum contribution of the nonlinear term to LR VANY, A
that of the linear term is estimated to be about 0.2. This ~20r
suggests that it may be a crucial fault in describing the pul- r
satile motion of the arterial blood to neglect the nonlinear
convective terms. Second, it is assumed in linearized theories
that the distortion of the vessel wall is a small percentage of
the radius of the vessel. In systemic arteries, the change in
radius during any one cardiac cycle is usually less than 4%, 100
but the accompanying change in cross-sectional area may nota /\'\ /\\\ /\N
be negligible. Third, linear elastic properties of vessel walls %
are usually assumed in these theories. But the modulus of
elasticity of arterial vessels varies quite strongly with pres-
sure. The omission of this effect may cause another serious

problem with the linearized theories. FIG. 1. A diagrammatic comparison of the behavior of the flow
In 1960 McDonald measured simultaneously changes inelocity and pressure pulse.
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cous effect in a large artefg~0.5 cn) if we only consider

the majority of blood flow at the center of the artery. The
interesting results are that the incident wave can be transmit-
ted into each bifurcation without changing, or nearly without
changing, the amplitude, however sometimes there is sub-
stantial reflection, but often it is so small that it can be ne-
glected. The parameter values at the arterial bifurcations de-
termine whether there is substantial reflection or not.

fncident wave

[
v

reflected wave

EQUATION OF MOTION

By virtue of the anatomical geometry, the pulse can be
represented by a one-dimensional wave. Following previous
authorg5,6,14, we assume that blood can be regarded as an
Jdncompressible and inviscous fluid. Further, our model as-
sumes that arteries are uniform inhomogenous cylindrical
tubes having nonlinear elasticity. The laws of hydrodynam-
low water waves with uneven bottofd4], etc. In general, @cs goyerning the transport _of an inviscous and incompress-
we only consider the transmission and the reflection of thdP!e fluid are the conservation of mass and the momentum
larger soliton, because the smaller one can be studied fRAuation, given, respectively, by
much the same way.

FIG. 2. Reflection and transmission of the nonlinear blood wav
at the arterial branching.

Recently, Yomosa studied the motion of weakly nonlinear IA N d(Av) 0 R
pressure waves in a thin nonlinear elastic tube filled with an at ax
incompressible fluid. He showed that the dynamics can be
governed by the KdV equatiofb]. On the other hand, in o o 1 9P
order to understand the principal feature of blood flow and ty —=———. 2

the role of the different types of structures that influence Jt X pPo IX

blood motion, Paquerot and Remoissent studied the propaga-

tion of pressure and wall displacement pulses in a large elag* third equation describing the radial motion of the wall
tic artery with the presence of both dispersion and variatiorfnder the forces exerted by the fluid is necessary in order to
of the radius and Young’s modulus of the art§6]. How-  have a complete specification of the syst&h

ever, without considering the arterial branching effect, they 5

did not know how the arterial branching affects the propaga- h IR P_p._ E 3)

tion of nonlinear blood waves. In order to elucidate the trans- Pwil "5z~ e R

mission and the reflection of blood flow at the arterial

branching, a general method is proposed to understand noherep,, is the density of the blood artefy,,=1.05 g/cni).
linear wave reflection and transmission from incident waves, the external pressure; the extending stress in the tan-
in a one-dimensional fluid-filled elastic tube at the branchinggential direction, andh the thickness of the tube of radius
(see Fig. 2 The wave equation of reflection and transmis-R(x,t). We can suppress the unknown pressBeif we

sion are given analytically. The contribution of both blood consider an artery already inflated at the diastolic pres@yre
viscosity and nonlinearity has been well studj@di but we  with radiusa, thicknessh,, and with the equilibrium relation
neglected blood viscosity in this paper because the viscous =P, (h,/a)c®. Only considering weak waves, i.e.,
effects are mainly confined to the boundary layers, Whose\_AozWRg_Wa%zwa(R_a) and defining the small ra-
thickness is much less than the vessel radius. It can be estial elongation of the arterial wal)=(R—a)/a and the dif-
mated that the thickness of the boundary layers is abott 10 ferential pressur@=P— P, it follows from Eq.(3) that

cm by the equation ofyn/pow if we take the parameter

values asy=0.012P, p,=1.05 g/cni (see Ref[11]), a=0.5 puh B2(A=Ay) hea
cm (large artery, and w~10/s(there are only two pulses per >R P =p-— R 4
secong. Compared with vessel radius, the boundary layer is 0

much less. We will not consider the boundary layer since it , . , .
is so small, but we will consider the blood flov>\l/ atythe center¥herec’=yE(1l+ay), E is Young's modulus, and is the

of the artery, which includes almost the total cross section O?ogff|0|ent of ’?0”"r.‘ear elasticity. It is assumed that the wall
the artery and of course nearly almost all of the blood flow's |ncompr¢55|ble, |._eRh=_R0h0. . )
for a large artery. The maximum and minimum values of __Introducmgzth,e d|menS|,0nIess ,quantltle,s through th? defi-
blood velocity are approximately 100 cm/sec and 0, respecn't'gnséz 772&1_A » P=PoP tiTt ’ X:Lé_’ U:(ZL/T)U '
tively (see Fig. 1, and there are only about two pulses per0~ 78" L“=p,ah/2p, po=Eh/2a, T"=p,a’/E, we
second, therefore the contribution of viscosity is estimate hen have the dimensionless equations from Ens(2), and
by 7(1/r)(duldr)~10"2x1/0.5x100/0.5-4 (neglecting the 4),

boundary layer contributionand the contribution of nonlin- , .

earity is estimated bypgu(du/dx)~1.05<100x100/50 i+ d(A'v") -0 (5)
~200. The nonlinear effect is more important than the vis- at’ ax’ '
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v’ v’ ap’ and the perturbation equations
T T ©
p'=p' (&7 m=e’prtepyt -, (23
2 PN 2(2-atah) L .
P meﬁ‘(A _1) —(1+A,)2 . (7) v =V (g,T,?])—E Ul+6 1)2+"‘ , (24)

P A _ 2 4
Now we consider the model in which the cylinder tube A=A =1t e At eAgt . (29

has one branch at the regiorc0 and two branches at the

regionx>0. The wall of the cylinder tube has a jump af Substitution of Eqs(20—(29) into Egs. (5)(7) yields at

pw» ho, andE atx=0 (Fig. 2). The variables of one branch at o)
x>0 are represented hy,, v,, A,, etc., and the others at A IA. g s
x>0 are represented by;, vs, A3, etc. Those ak<0 are _o™ e 001 ﬂ 0, (26)
represented byp, v, A, etc. 9§ dr 9§
For x>0 we only consider the transmitted waves and in-
troduce new independent variables vy dvy 9Py c?pl @7
'y T ’
E=e(x'—t'), )
63 p1=A1. (28)
n=7 X 9

Considering the equilibrium condition gf=0 whenv =0,

Introducing the perturbation expansions we can obtain the following equations:

py= e2ph + etphyt - | (10 AL=AL(&,7)+AS(7,7), (29
AL=1+ 2Ab+ * ALyt -+ | (12) p1=pi(&n)+pi(7. ), (30)
vy= vyttt (12 v1=vi(&n)+oi(7,m), (3D)
p3= Engl"' €4pt32+ e (13 and
AL=1+ 2AG+ e*Agp+ -+, (14) =py=vy, (32
viy= €2yt vt (15 AR=pf=—p¥. (33

substitution of Eqs(8)—(12) into Eqgs.(5)—(7) yields atO(é?) Similarly atO(e*) we can get

Po1=A51= V. (16) B ﬁ_Az a_Az (A1) % % d(Avq) E ﬂ
At O(€*) we can get 9 IT 23 g It ar 2 dn
§ =0, (34)

01} 21 0"31) 21

—H 4 (1+awh, —=+ =0. (17)
an 29E T 08 sz | (902 i vy dpa 0p2 19py _
g T Tl o —— 3 :
Similarly it can be obtained ‘95 9& T 9E g (35)
—+(1+a)v31 +—3— 0, (18 a—2 A, PA;  FPA;
J 0 = —
7 é 23 Po=Art ——+ Pr == Ear (36)
Pa1=A3= V3. (19

considering that\;v,=Av | +ARv  which can be given
For x<0 we need to consider both incident and the re-from Egs.(29—(33) and rewriting Eqs(34)—(36),
flected waves. For this purpose we introduce the following

transformations of independent and dependent variables: 25_A2+2@+ I(Av}) N I(ATVE) L1 1 501 1 501
ar ar 9€ ar 2 6?77 2 877
E=e(x' —t"), (20
AL AR vl v} oA}
r=e(X' +t'), (22) +(9—§3+W+vla—§+vl a7 +(a—2)A] — PY:
&3 oA} 19p] 10
=5 X', (22) +(a—2)A1&—:+§&iﬂl+2 ap; 0, (37)
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26A2 2&02+&(A'1v'1)+¢9(Alvl) 1) 18
9 TeaE A€ ar 24dn 24y
PAL BAR ! Y '
——31__31_01_1_01_l_(a_z)Al_l
1713 aT 9€ ar 1713
AR 1 p) 1 9p%
IR I I I i 9
From Egs.(32) and(37) we can obtain
&v' 1 &v' &3v'1 o 3g
Lt (a+t —+
P (a+1)v) — PR (39
if we set
2<9A2 d, AT  #°AT Rav'1+ 2N
or | ar 9P Ul ag Ut or
r VR AR oA} oA aAR o
+ —+ —+ .
(40)
From Egs.(33) and(38) we can obtain
Gl +1 G L-0 41
R S i = “)
if we set
Z&Az &v2+8(Allv|1) a°A] Ic?vll R&vll
R T T R TR I TS

3UR 9 R I
—v} . —(a— 2)A1(9——(a 2)A; — ag =0.

(42)
Letting
-6
vt21=1+ vy, (43
-6
=T, v (44)
v 6, (45)
Vit a
6
R__° R
1715 a Y (46)

we can rewrite Eqs(17), (18), (39), and (41) as the KdV
equations,

(731)2
9E

(9’)7 Uz_g =0.

(47)

Similar equations can be given for;, v', andv®.
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CONSTRUCTION OF TRANSMITTED AND REFLECTED
WAVES FROM INCIDENT WAVES

We examine the conditions for the continuity of pressure

and mass ax=0. NeglectingO(e* quantities we have
ki[Pi(—et’,0)+pI(et’,0)]=koPhy( —€t’,0), (48

KoPby(— €t’,0)=Ksphy(—et’,0), (49)

Ky

2_
" 2po

112
) [U'l(—et’,0)+v1R(et’,0)]

a

k3 1/2

2_po) vy —et’,0),
(50

wherek;=E h;ya;, ky=E,h,/a,, andks=Ezhzya;.

Equat|ons(48) (50) can be rewritten in the following
form:

k2 1/2
2_Po> Ut21( - 6t',0)+a§

2
vy~ et ,0)= Ko Tky+ vk /Ky (a/a1)2+ Ky /KKy (ag/ag)?
xv!(—et’,0), D

t , 2
VO e VRt a a7+ b KoKy (ag ag)?
xv'(—et’,0), 52

1—ky /ky(ay/a;)?— Vky Iks(aglay)?
1+ Ky IKy(ay/a;) 2+ Vky Tkg(ag/ay)?

vR(—et’, 0=

Xv'(—et’,0). (53
Let us consider one soliton solution of
v’ r?v 3! 0 54
o O et aE 0 =4
1 § 4n
I _ _
v 25 sect"r(d dz)’ (55)
whered denotes the width of the soliton.
From an initial condition
X
V(X,00=AL" 2 sech T (56)
for the KdV equation
VT_ 6VVX+VXXX: 0, (57)

we can determine the numbirof generated solitons by the
inverse scattering methdd.3]. The numbem is the maxi-
mum integer which satisfies

VA+i+3—-N>0

and the amplitude of the generated solitons is given by

(58)
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2(VA+E+1-])2L 2 (59)

(i=1,2,3...N).

Using these formulas we determine the amplitudes of re

flected and transmitted solitons. From E(1), (52), (53),
and (55) we can determine the initial conditions of, v},
ando®,

2

L(—et’,0)=
02l ) Tkt o TK(ag /a0 Kyl VKaKa (3 )2

d (60)

><(—2d‘2)secﬁ( e ) .
2

vi(—et’,0)=
3l ) kg /Ky + VKs/ky(as/ay)2+Ka/ KoKy (2, /)2

(61)

x(—2d2)secﬁ(%),

1—Vky /ky(a,/a;)?— Vky Ikg(ag/ay)?
1+ vk, /ky(ap/ay)?+ VK, Iks(az/ag)?

x(—2d2)secﬁ<%>.

vR(—et’,0)=

(62

It can be obtained that for the reflected wave the nurhbir

1777

vR(—et’,00~—0.2'(—et’,0), (65)
and then the amplitude of solitons propagating in branches 2
and 3 can be given by E@59),

Vhs=03s~0.86". (66)
It can be concluded from Eq58) that there is only one
transmitted soliton in each branch and the soliton amplitude
is larger than that of the initial value for the transmitted
waves. The reflection is substantié€?0% of the incident
waves. It has been well known that there are many small
arterial bifurcations in the thoracic or abdominal aorta, and
we now estimate the reflection and the transmission at these
bifurcations. There is, for example, a renal artery in the ab-
dominal aorta[11], for which the experimental data are
given by a,=a,~0.8 cm,E;=E,~10x 1C° dyn/cn? (for

the abdominal aorjaand a;~0.2 cm,E;~10x10° dyn/cn?

(for the renal aorta  hgy/a is approximately a constant. The
transmission and the reflection are given by E§4), (52),
and(53) as follows:

vh(—et’,00~0.9%'(— et’,0), (67)
vy(—et’,00~0.9%'(—et’,0), (68)
vR(—et’,00~—0.02'(—et’,0), (69

and then the amplitude of solitons propagating in branches 2
and 3 can be given by E@59),

1 or 0. For the transmitted waves one or more solitons are

always generated.

DISCUSSION AND CONCLUSION

We only study transmission and reflection of blood puls
waves for a dog. The parameter values at arterial bifurcations
for a dog are approximately given to estimate reflection an
transmission from incident waves. The experimental resulta,]
tell us that the radius of an artery changes slowly along th
propagation distance. The radius is assumed to have a we

exponential evolution, that ig=ay,e™™, wherem anda,

are positive constantssee Ref[11]). According to its ex-

perimental data, the approximate parameter values at arteri
bifurcation of the abdominal aorta into the femoral arteries

are given, respectively, as followsa;=0.7 cm, h;=0.05
cm, E;=10x1C° dyn/cnf (for the abdominal aorja and
a,=a;=0.6 cm, h,=h;=0.04 cm, E,=E;=10x1C°

dyn/cnf (for the femoral aorta The initial values of re-
flected and transmitted waves at the bifurcation in branches

and 3 are given from Eq$51), (52), and(53), respectively,
by
vh(—et’,00~0.8'(—et’,0), (63)

vy(—et’,00~0.8'(—et’,0), (64)

e

vh=05~0.98", (70)
but the reflection is negligibly small. We can conclude that
sometimes the reflection can be neglected, but sometimes it
cannot. The parameter values at the bifurcation determine
hether there is substantial reflection or not.

It has been well known that the KdV equation is one of
e typical nonlinear equations that have soliton solutions.

%(')py separate pulses with constant or nearly constant wave

rm and velocity described by the KdV equation are soli-
tons. We propose that transmitted waves are solitons, and
tr]is can explain why blood pulse waves can propagate into
gny artery, because solitons have this character. When blood
pulses are transmitted at the bifurcations, their amplitudes
are approximately unchangéexperimental resulis This is
consistent with soliton theory. These observations are also
consistent with linear theorisee Ref[1]). Actually, the am-
Blitudes of blood pulses change slightly as they propagate
away along the artery. This is due to the variation of the rest
radius and Young’s modulus of an artery or blood viscosity
in a very small artery. These solitons are sometimes called
quasisolitons. There have been many studies on so-called
guasisolitons in one-dimensional inhomogeneous systems
such as nonlinear lattices whose masses are not unjfddm
shallow water waves with an uneven bottpid], etc. Some-
times no solitons can be measured when the arterial param-
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eter values are not suitable. In this case, the artery is abnor- ACKNOWLEDGMENTS
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